TWAICE

Why software is key for safe, efficient and profitable operations of BESS.

Dr. Stephan Rohr, Co-CEO of TWAICE

www.twaice.com

Munich, 5/22/2024

Relevance of BESS in the Energy Transition

© TWAICE 2024 | www.twaice.com |

Relevance of BESS in the Energy Transition

Utility/Grid-Scale

C&I

Electricity generation and distribution

- Price arbitrage
- Capacity payments
- Ancillary service markets
- 0 ...
 - ~ 10 MWh 1000 MWh

Commercial & Industrial applications

- Peak shaving
- Self-consumption optimization
- Charging infrastructure

0 ...

~ 1 MWh

TWAICE

Home applications

- Renewable integration (rooftop PV)
- EV charging infrastructure

0 ...

~ 0.01 MWh

Relevance of BESS in the Energy Transition

Global Cumulative Installed Battery Capacity [GWh]

Energy Neighbor

Der dezentrale stationäre Beiterlespeicher Energy Neighbor at ein retzdiontich eingesetzter Energiesprecher in der 400 V Ortaretzsbere. Er wird mit besonders sicherer und lengebigen Litram-Eserphrosphat-Zallen (L/FePQ) aufgebaut.

 Americang Expresentation, Hepdelaterg, Notor-Natureg
 Entrative 400 V Medemportungsants
 Americangeri co. 5 x 23 x 2,4 Melov
 Energovitum, 300 value Leitung (XAW)
 Bols Butterill
 Mitchenklingslorung
 Mitchenklingslorung
 Literatuur (De 20 Jeles)

Erneuerbare Energien lokal erzeugen, lokal speichern, lokal nutzen.

0.2MWh

Grid Storage

Gefördert durch: Bayerisches Staatsmänisterium für Wirtschaft und Medien, Energie und Technologie

Der dazenfrale stationäre Battericspeicher Energy teightor ist ein netzdienlich eingesetzter Energesprecher in der 400 V Ottaretzobere. Er wird mit besorders sicheren und leightiger Lithern-Ereitrisphosphar-Zalien (LiFePO) aufgebaut.

 Amendung Szymweltrach, Hepdischen, Notoritationg
 Emitte in 400 V Medersponungsists
 Albressonger co. 5 x 7,3 x 7,4 Meter
 Ebergenburg 30,5 vgs

Leitung (KAW
 Hots Robusting)
 Mitchanitik (Kawa)
 Mitchanitik (Kawa)
 Mitchanitik (Kawa)
 Lister Kahang
 Lister Kahang
 Lister Kahang
 Lister Kahang

Average size of grid-connected BESS in MWh

1.8 billion data points

generates

one BESS

In one day

Different applications of software to run & improve BESS

Addressing the technical challenges of BESS

Challenges of Commissioning

TWAICE

Faulty installation & production defects remain major drivers of BESS failures

Challenges of Commissioning

Weak Spots & Defects

Manual effort and a lack of deep insights into the battery hinder an efficient and effective commissioning

© TWAICE 2024 | www.twaice.com | 12

Case study: Digital Commissioning

How TWAICE's Digital Commissioning helps Austria's leading energy provider (Verbund) to scale their BESS business.

Connector issue fixed on-site

Verbund TWAICE

"TWAICE Digital Commissioning helps us to overcome the challenges posed by an increasingly heterogeneous system integrator landscape and ever larger BESS. Battery analytics software is a must-have for baselining performance at beginning of life and identifying deficiencies before operation starts."

- Karl Potz, Head of Battery Solutions at VERBUND

Challenges of Performance & Availability

TWAICE

82% Ø BM¹ availability (UK)

"Unplanned downtime led to an average availability across our fleet of only 84% last year"

US asset owner

Challenges of Performance & Availability

The business case after commissioning is driven by the availability, roundtrip efficiency and lifetime of a storage

Challenges of Performance & Availability

Get granular insights into your storage system & find where the problems are

Example: LFP SoC Estimation – BMS Failure

Example from a >400 MWh system – CASIO market

Indicators:

 BMS SoC is jumping by more than 10%, especially at the end of the SoC ranges

Consequences:

- Sudden interruption of operation
- Revenue loss and potential penalties
- Downtime due to component failures such as inverter tripping

Revenue loss, penalties and reduced availability can be avoided by leveraging better State of Charge calculations which highlight the uncertainty and errors of the BMS SoC

TWAICE

Avoiding the worst case scenario is at the top of mind of many ESS managers – rightly so

US integrator

Even with proven product designs and extensive safety testing, at the scale that storage is being deployed, we would be naïve to assume safety incidents won't happen.

Commissioning

Performance & Availability

TWAICE

TWAICE can prevent most fire events, benefitting clients and insurers alike

70 fires

Despite existing fire prevention and mitigation measures, severe thermal events continue to happen - a total of c. 70 fires are captured in EPRI database, and the number of unreported minor incidents can only be estimated

87% caused by battery internal

events

Investigating the causes for failure we see that almost 90% of the incidents are caused by battery internal events

Incidents can be detected and avoided

This analysis suggests that most of these incidents could have been detected and avoided with battery analytics by TWAICE

TWAICE

Existing issues only provide the last layer of safety – early detection is required

Get notified of safety-critical incidents by email & view on the incident log

afety M	onito	ring & Ana	alytics Beta ver	sion ①					Incident rules
Overview 12,483	of 12,483	📋 Critical	O of 0	A High	336 of 336	9 Medium	2,758 of 2,758	Now	9,389 of 9,389
Severity y 17	Message		Storage V	Component 57	Sensor 17	Start y 9	End v V	Duration 🗸 🕫	Explore
P.	String Module exceeded the 10.00°C.	e Temperature Min lower threshold	Green Alfons	String 1.2.3	String Module Temperature Mil	February 02, 2024	Ongoing	<u>(</u>)	→
P.	String Module exceeded the 10.00°C.	e Temperature Min lower threshold	Verlee	String 1.2.5	String Module Temperature Min	February 02, 2024 n 08:24	February 02, 2024 08:24	4 0 Secs	÷
p.	String Module exceeded the 10.00°C.	e Temperature Min lower threshold	Stromquelle	String 1.2.9	String Module Temperature Min	February 02, 2024 n 06:42	 Ongoing 	(i)	÷
p.	String Module exceeded the 10.00°C.	e Temperature Min lower threshold	Green Alfons	String 1.3.10	String Module Temperature Min	February 02, 2024 n 05:33	 Ongoing 	©	→
14	String Module exceeded the	e Temperature Min lower threshold	Verlee	String 1.2.10	String Module	February 02, 2024	Ongoing	(i)	<i>→</i>

Example: Different DCR peaks observed in histogram

Example from a 400 MWh system

380 of strings 285 190 DCR shows two different ā 95 distributions in the histogram

Consequences:

Indicators:

0

- Different root causes :
 - Connector issue within 0 inverter 2 which leads to higher resistance
 - Same cell type installed in 0 BESS, but different cell quality, relevant for warranty claims

Challenges of Warranty Coverage

Challenges of Warranty Coverage

TWAICE

Tracking the warranty status is not as simple as it seems

Heterogeneity

Static Coverage

Unclear Status & Claims

Reduce warranty risks

Steer your operation within warranty limits & pro-actively manage warranty cases

N TWAICE	warranty fracker					energy@twaice.com 🗸
	STORAGE SYSTEM OVERVIEW					
	INFORMATION	CURRENT STATE OF HEALTH	WARRANTY-RELEVANT FULL CYCLES	AVG RESTING STATE OF CHARGE	AVERAGE TEMPERATURE	
	Client Penalty Execution Demo Client Cycles	96,2%	286	49,1%	26 ∘c	
	Initial Capacity Power Initial Bettery Capacity 10 mWh 10 mW Samsung SDI 94 Ah	Warranty-reference Difference 97,4% - 1,2%	Warranty-reference Difference 200 86			_
	TIMELINE	Warranty Beginning 15.11.2020 TODAY			Warranty End 15.11.2027	_
	SYSTEM NAVIGATION: STORAGE: Demo / INVI STATE OF HEALTH	ERTER: Select ~	SYSTEM VIEW: De Aggregation	Worst CUMENT 10H OX2021 OX2021 OX2021	EASED ON LEVEL: Rack	
	CYCLES	DEMO STORAGE		WARRANTY RELEVANT CYCLES		_
	EQUIVALENT FULL CYCLES 254 PENALTY 32	300				_
	WARRANTY-RELEVANT CYCLES 286 WARRANTY REFERENCE 200	200			286	
	DEVIATION TO WARRANTY - 86	0	2020 012021 02/2021	03/2021 04/20	221 TODAY	_
	STATE OF CHARGE	DEMO STORAGE				_
	AVG CENTRAL SOC 48.2%	70%		MINE DAILY RESTING SOC	AVG. DALY RESTING SOC	

Addressing the technical challenges of BESS

Leading software solutions to successfully design, validate and operate batteries at scale.

TWAICE

Unleash the Full Potential of Batteries

Verbund	ju:niz	SW//M	TÜVRheinland
sembcorp		UENCE [®] A Siemens and AES Company	Gore Street Capital
pepper		Mercedes-Benz	Nobina
30+	Patents		
1	Onsite ba	attery research ce	enter
2	Offices ir	n Munich (HQ), Cł	nicago (US)
140+	and data	scientists	are engineers

